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Abstract

Camera-based object detection and automated driving in
general have greatly improved over the last few years. Parts
of these improvements can be attributed to public datasets
which allow researchers around the world to work with data
that would often be too expensive to collect and annotate for
individual teams. Current vehicle detection datasets and
approaches often focus on axis-aligned bounding boxes or
semantic segmentation. Axis-aligned bounding boxes often
misrepresent vehicle sizes and may intrude into neighbor-
ing lanes. While pixel level segmentations are more accu-
rate, they can be hard to process and leverage for trajectory
planning systems. We therefore present the Boxy dataset for
image-based vehicle detection. Boxy is one of the largest
public vehicle detection datasets with 1.99 million anno-
tated vehicles in 200,000 images, including sunny, rainy,
and nighttime driving. If possible, vehicle annotations are
split into their visible sides to give the impression of 3D
boxes for a more accurate representation with little over-
head. Five megapixel images with annotations down to a
few pixels make this dataset especially challenging. With
Boxy, we provide initial benchmark challenges for bound-
ing box, polygon, and real-time detections. All benchmarks
are open-source so that additional metrics and benchmarks
may be added.

1. Introduction
Perception systems and especially vision-based object

detection systems are integral parts of self-driving cars.
Camera images generally offer a higher resolution com-
pared to various sensors such as lidar or radar. This allows
an understanding of a vehicle’s complete surrounding and
object detections over long distances. Color information
can additionally be used to deduce attributes, such as brake
lights and turn signals, which are not available in other sen-
sors.

A lot of advances in computer vision and vehicle de-
tection are possible because of public datasets and bench-
marks.

Figure 1. Top: Sample annotations in rainy weather. Bottom: De-
tections provided by our baseline method.

1.1. Vision Datasets

One of the most impactful datasets, the ImageNet Large
Scale Visual Recognition Challenge’s (ILSVRC) [25], saw
a top-5 classification error reduction from 28.2% to 3̃%
within only six years. Over the same time frame, object de-
tection accuracy on the Pascal Visual Object Classes (VOC)
Challenge [6] and the detection part of the ILSVRC also in-
creased significantly [25]. These datasets, containing tens
of thousands to millions of annotated images, allowed re-
searchers to train new, much larger, and more powerful neu-
ral network architectures such as Faster-RCNN [22], Single
Shot MultiBox Detector [15], You Only Look Once [20,
21], and various ensembles. In addition to bounding boxes
for object detection, the Pascal VOC [6] and Microsoft
Common Objects in Context (COCO) [14] offer pixel level
annotations. This enabled the creation of models which ac-
curately stimate object locations in images down to individ-
ual pixels [16, 23, 1]. One promising application for the



advances in object detection and semantic segmentation are
driver assistance systems and fully automated vehicles.

1.2. Vehicle Detection Datasets

Fast, accurate, and reliable detections of other traffic par-
ticipants are crucial for automotive applications. This de-
mand has already led to a number of datasets for vision-
based vehicle detection [7, 5, 32, 29, 2, 19, 24, 17, 31, 28,
29].

The KITTI Vision Benchmark Suite [7] is one of the
first large datasets to offer a variety of annotations for au-
tomated driving topics such as odometry, optical flow and
object detection. Vehicles are annotated as 3D boxes within
KITTI. Cityscapes [5] offers full-scene pixel-level annota-
tions for 5000 images with an additional 20,000 coarsely
annotated images. The BDD100k dataset contains 100,000
images with vehicles labeled with both 2D bounding boxes
and pixel-level annotations.

Additionally, there exist a few datasets with axis aligned
bounding box (AABB) labels for vehicles such as the Toy-
ota Motor Europe Motorway Dataset (TME) [2], two Udac-
ity datasets [31], the Nexar Challenge 2 [17], Mapillary Vis-
tas [19], and the Lisa Vehicle Dataset [28]. See Table 2 for
the respective dataset sizes.

In addition to manually annotated datasets, it is possible
to train detection models on simulated data. The Synthia
dataset [24], for example, contains 200,000 images with
pixel level annotations including vehicles. Another research
area focuses on creating photo-realistic images from simu-
lation [3].

We present the Boxy dataset for image-based vehicle de-
tection specific to freeway driving. All vehicles are split into
their visible sides which creates a 3D-like boxy impression
for a more detailed representation compared to AABB. To
our knowledge, the dataset is the largest public vehicle de-
tection dataset with 1,990,806 manually annotated vehicles
in 200,000 images. It includes different weather conditions
and high resolution, five megapixel images which make this
dataset especially challenging.

We publish Boxy with benchmark challenges on AABB
detections with and without runtime restrictions, and 3D-
like detections to allow comparing vehicle detection meth-
ods on a large amount of difficult annotations.

2. The Boxy Vehicles Dataset
2.1. Key figures:

• 200,000 images, full resolution about 1.1 TB
• 5 megapixel resolution of 2464x2056
• 3D-like and 2D bounding boxes
• 1,990,806 annotated vehicles
• Average vehicle annotation covers only 0.3% of an im-
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Figure 2. Distribution of annotated vehicle heights in pixels.
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Figure 3. Distribution of vehicle heights for annotations smaller
than 100 pixels.

• Sunny and rainy conditions at daytime, dawn, and dusk
• Traffic jams and empty freeways

2.2. Dataset Overview

Boxy is a large and challenging computer vision dataset
for vehicle detection.

One challenging aspect is the fairly small object annota-
tions compared to the image size, which results in a large
search space. The average annotation only covers approx-
imately 0.3% of its respective image and the majority of
annotations are less than 50 pixels in height as displayed
in Figures 2 and 3. We also note that Boxy also contains



Figure 4. Number of vehicles that occupy each pixel. A large per-
centage of vehicles is represented by small annotations towards the
center of the image close to the vanishing point.

annotations that are larger than the complete image resolu-
tion of most existing datasets. Especially for realtime de-
tections, there need to be input resolution, runtime, and ac-
curacy trade-offs.

Generally, vehicles are visible within every part of the
image. An overall majority, however, are clustered around
the vanishing point with a distinct distribution around the
average location of neighboring lanes as visualized in Fig-
ure 4. Vehicles outside the densest regions also need to be
reliably detected, especially because large annotations re-
fer to close and therefore safety critical ones. The camera
view cannot only be optimized for vehicle detection, but
also needs to be able to, for example, capture traffic signs,
traffic and metering lights.

2.3. Image and Sensor Specifications

All images are collected using a mvBlueFOX3-2051
with a Sony IMX250 chip using a global shutter [10]. The
data is stored at 15Hz as 8 bit color images at a resolution of
2464×2056 pixels. At 3x8 bits per pixel value, each image
array requires approximately 15.2 MB or 228 MB per sec-
ond per camera which may need to be streamed, processed,
and stored. As part of Boxy, we provide the images lossless
portable graphics files at about 5.5 MB per image. For faster
downloads and easier handling, we also provide equalized
and downsampled versions.

2.4. Recordings and Environment

All sequences were recorded on San Francisco Bay Area
freeways, namely the California state routes 85 and 92,
and interstates 101 and 280. Despite its limited regional
scope, the different traffic scenarios, 3D-like annotations,
their sizes, times of day, and weather conditions should en-
sure that Boxy is a challenging dataset.

Sequence # Frames Conditions
Training:

2016-09-30-14-41-23 9313 sunny
2016-09-30-15-03-39 6349 sunny
2016-09-30-15-19-35 6199 sunny
2016-10-04-13-52-40 12854 sunny
2016-10-04-14-22-41 6494 sunny
2016-10-10-15-17-24 2779 sunny
2016-10-10-15-24-37 3126 sunny
2016-10-10-15-32-33 373 sunny
2016-10-10-15-35-18 4940 sunny
2016-10-10-16-00-11 835 sunny
2016-10-10-16-12-20 11054 sunny
2016-10-10-16-43-45 7456 sunny
2016-10-10-18-25-04 5592 sunny
2016-10-10-18-41-33 7898 sunset to dark
2016-10-26-12-49-56 178 sunny
2016-10-26-13-00-25 1031 sunny
2016-10-26-13-04-33 16045 sunny
2016-10-26-17-55-06 191 sunset
2016-10-26-17-57-22 1890 sunset
2016-10-26-18-03-11 3375 sunset
2016-10-26-18-22-27 2380 sunset to dark
2016-10-26-18-38-03 1423 dark
2016-10-30-09-53-48 3559 rain and traffic jam
2016-10-30-10-01-47 1224 rain and traffic
2016-10-30-10-04-51 7956 rain
2016-10-30-10-24-32 83 rain
2016-11-01-10-07-39 5239 sunny, different lens
2016-11-01-10-20-23 5562 sunny, different lens

Validation:
2016-09-27-14-43-04 21475 sunny
2016-11-03-15-40-30 7271 sunny, light traffic

Testing:
2016-11-02-18-05-08 12767 sunny to dark
2016-11-03-15-03-15 11180 sunny and traffic
2016-11-03-15-28-03 5614 sunny and traffic
2016-10-30-10-26-40 6295 rain

Table 1. Overview of the individual sequences within Boxy. There
are 135,398 training, 28,746 validation, and 35,856 test images.

An overview of the different sequences in the training,
validation, and test sets is given in Table 1. The record-
ings consist of mostly sunny conditions with non-negligible
parts of overcast, heavy rain, dusk and nighttime driving.
Traffic conditions range from light to heavy congestion and
should reflect typical freeway driving.

2.5. 3D Boxes and Annotation Specifications

Axis aligned bounding boxes (AABB), 3D bounding
boxes, and pixel level segmentation are the current standard
in vehicle detection. AABB often do not tightly capture
vehicles and may intrude into neighboring lanes (as dis-



Figure 5. The difference in accuracy between 2D and 3D annota-
tions. The 2D axis-aligned bounding box clearly includes parts of
a neighboring lane.

Figure 6. Left: Typical annotation of a car using a rear rectangle
and a trapezoid for the side. Note the shared edge reduces the
number of required points to six. Right: Visible difference in ori-
entation of the upper side edge.

played in 5) and therefore may impede planning capabil-
ities. Pixel-level segmentations can be computationally in-
tensive to process for planning methods and may be noisy.

Boxy contains 3D-like annotations with visible sides
split into individual quadrilaterals. The annotations are im-
age only and do not contain 3D points. For a simplified an-
notation process and quality control, we label vehicle rears
with AABB and sides with trapezoids. Figure 6 displays
example annotations. This simplification works for all ve-
hicles within the dataset but does not for corner-cases such
as vehicles positioned orthgonal to driving lanes.

One difficulty in the annotation process is the definition
of the upper front. The upper side edge is supposed to align
with the roof of the car, but with a variety of vehicles this
can be ambiguous. Figure 6 displays different side anno-
tations for the same car. 3D information is not accurate
enough to fix the height for distant cars and having the upper
and lower side edge parallel is not accurate. One possible
fix could be to incorporate the images’ vanishing points.

2.6. General Annotation Requirements

All vehicles going in the same direction as the camera
have to be annotated. This includes on-ramps, off-ramps,
and parallel roads. Most of the sequences are recorded on
fully divided freeways which makes it unlikely for oncom-
ing traffic to affect our trajectory.

Dataset # Images # Vehicles Resolution Label
[32] BDD100k 100,000 1,095,289 1280x720 pixel
[29] BoxCars 116,286 27,496 <200x200 3D-like
[5] Cityscapes 25,000 88,305 2048x1024 pixel
[7] KITTI 15,000 32,750 1392x512 3D
[28] Lisa Vehicles 2,200 8,217 704x480 AABB
[19] Mapillary 25,000 <175,000 >1920x1080 AABB
[17] Nexar 55,000 148,000 1280x720 AABB
[24] Synthia 200,000 pixel-level 960x720 pixel
[2] TME 31,850 135,100 1024x768 ABBB
[31] Udacity 1 9,423 72,064 1920x1080 AABB
[31] Udacity 2 15,000 93,086 1920x1080 AABB
Boxy 200,000 1,990,806 2464x2056 3D-like

Table 2. Overview of vehicle detection dataset sizes.

Boxy

TME

COCO

Synthia
Kitti

Udacity
Cityscapes

ImageNet

Figure 7. Visualization of different dataset resolutions.

All vehicles within the freeway are annotated as a single
vehicle class. This includes passenger cars, trucks, campers,
boats, car carriers, construction equipment, and motorcy-
cles. The rear bounding box should contain the complete
rear without containing the sides or front mirrors. For vehi-
cles that carry or contain other vehicles, see Figures 5 and 9,
only the larger vehicle has to be annotated.

Partially occluded vehicles have to be labeled with an
estimate of their complete size and position. Finally and
importantly, only vehicles that can clearly be seen and iden-
tified as vehicles are annotated. Especially tiny, blurry ob-
jects where it is unclear if they are vehicles are not added.

2.7. Dataset Evaluation and Comparison

Boxy is one of the largest vehicle detection datasets in
terms of number of images, annotated vehicles, and vehicles
per image, as displayed in Table 2. To our knowledge, only
general datasets like the ILSVRC Detection [25], OpenIm-
ages [13], and COCO [14] surpass it in terms of number of
images.

Usually, cameras for automotive systems have a resolu-
tion of one to two megapixels [5, 7, 17, 2, 31]. With five
megapixel images, we provide a higher resolution than most
datasets, see Table 2. Some of the annotated vehicles are
larger than the complete images in competing datasets. Fig-
ure 7 gives a visual comparison of the different image reso-



lutions. Additionally, the ratio of object to image size is on
average only 0.3% compared to 1.0% in Cityscapes, 1.65%
in Kitti, and 17% in Imagenet.

Another distinct feature of our dataset is the 3D-like
bounding boxes. The Kitti annotations exceeds these by
having real 3D points, but do not reach the same annota-
tion distance.

However, we group all types of vehicles into a single
class, do not offer annotations in urban environments, sim-
plify the annotations slightly, and do not have 3D informa-
tion. Boxy also does not offer the highly accurate calibra-
tions and sensor-set that Kitti has to offer or the pixel-level
semantic segmentations that are available in Cityscapes and
BDD100k. A small subset of our annotations are incorrect
and the level of detail in the annotations may slightly vary
between images. Overall, the dataset should be one of the
largest and most challenging for object detection and espe-
cially vehicle detection.

3. Vehicle Detection Baselines
For our benchmarks, we split the dataset into training,

validation, and test sets such that no recordings are split and
a variation of conditions is reflected in the test set, see Ta-
ble 1. The starting benchmarks will cover 2D, 3D-like, and
real-time detections with the test set’s annotation being pri-
vate. All benchmarks are initially evaluated based on aver-
age precision.

3.1. AABB Baselines

Over the last years a variety of object approaches, for ex-
ample, Overfeat [27], R-CNN [9], Fast R-CNN [8], Faster
R-CNN [22], the YOLO architectures [20, 21] and the Sin-
gle Short Detector (SSD) [15] were developed. For these
general methods, the underlying base networks can be se-
lected based on accuracy, speed, latency, convience and
memory requirements. The different base networks can
range from a MobileNet [26] over the ResNet familiy [11]
up to the Inception [30] and NASNET architectures [33].
Additionally, there are a number of image-based 3D box
specific methods [18, 4].

As our baseline methods, we select an SSD [15] with
MobileNet V2 [26] for speed and a Faster R-CNN [22] with
NASNET-A (6@4032) for a higher accuracy. We train both
networks using the Tensorflow Object Detection API [12]
and initialize them using models pretrained on COCO [14].

3.2. Refinement by Keypoint Regression

A second step optimizes the axes-aligned bounding
boxes to better represent the real shape of vehicles. We train
a MobileNet V2 [26] to detect the eight visible corner points
of a 3D box for each detected vehicle. For this, all detected
objects are scaled to an input resolution of 256×256 pix-
els and used as input to the second network. We pose the

Figure 8. Left: Sample detections within image at dusk. Right:
The trained model incorrectly classified the left side as visible

regression problem as a classification problem by sampling
the bounding box corners uniformly over the image. For the
baseline model, we use 50 bins and add a random margin
of 10% to 30% to account for inaccuracies in the detection
step. During inference, a constant margin of 20% is added.

The geometric representation of the annotations, de-
scribed in Section 2.5, namely that each vehicle is repre-
sented by a rectangle with connected trapezoid allows us to
reduce the number of values to regress. The rear can be rep-
resented by two points at opposing corners of the rectangle,
totaling in four scalar values. The sides are added to the rear
by two additional points that share a common axis, resulting
in three additional scalar values.

L = LV + LR (1)

LV = −
V∑
vi

log(vi)vil (2)

LR = −
R∑
ri

v(ri)ril log

(
eri∑R
rs
ers

)
(3)

We minimize the overall loss L (1) which is the sum of a
visible side classification loss LV (2) and the regression loss
LR. For each corner point bin ri ∈ R, the cross-entropy
loss is calculated and summed up if the corner point belongs
to a visible side, i.e., v(ri) is 1.

We add a classifier to determine which of the sides are
visible for a given object. The visibility of each vehicle side
V is posed as a binary classification problem and evaluated
using binary cross-entropy as part of the visible side classi-
fication loss LV in (2).

3.3. Baseline Results

We evaluate the detection methods based on the average
precision (AP) based on an intersection over union (IOU) of
at least 70%. Table 3.3 shows the accuracies and frames per
second (FPS) on an Nvidia GTX 1080 TI for the different
models on the test set. Each model receives a downscaled
image with an input resolution of 1232x1028 and only is
evaluated against objects that are larger than 5x5 pixels at
that resolution.



AP FPS
AABB SSD MobileNet 29.5% 13.2
AABB Faster-RCNN NASNet 41.3% 0.5
Faster-RCNN NASNet + Refinement 43.4% 0.4

Table 3. Average precision and frames per second for the baseline
models on the scaled test set.

Figure 9. Detection examples on a few interesting cases. Depend-
ing on the required IOU, the first three larger vehicles may be cor-
rectly detected, but their sides are not classified correctly.

For a qualitative impression of the baseline results, we
refer the reader to the supplementary video. Visually, the
3D detections tend to be far more appealing and lead to a
noticeable improvement in detection accuracy. There are
some reoccurring deficiencies in the detections such as in-
correctly classified visible sides as displayed in Figure 8,
detections in oncoming traffic, and false positives at greater
distances. A few more challenging samples are shown in
Figure 9.

Future work includes looking into different approaches,
underlying models, increasing overall accuracy, and inves-
tigating speed/accuracy trade-offs.

4. Conclusion
We presented the Boxy vehicles dataset, the largest pub-

licly available dataset for vehicle detection with almost 2
million annotated objects in 200,000 images. The small,
3D-like detections within 5 megapixel images in differ-
ent weather and traffic conditions make for a challenging
dataset. The average annotation only covers approximately
0.3% of its camera image.

With the dataset, we presented benchmarks for AABB,
3D-like, and real-time detections. The benchmark evalu-
ation and website are fully open source so that additional
metrics and challenges can be added. With enough feed-
back and submissions, we plan to extend the different ob-
jectives and metrics. We encourage all kinds of benchmark
suggestions.

For future datasets, we would look into annotating ob-

jects in multiple sensors and additionally urban environ-
ments.

There are a number of research directions to explore with
this dataset such as speed, accuracy trade-off analyses, test-
ing different input resolutions, combining different datasets,
inferring vehicle control based on camera images, domain
adaptation, and better metrics than average precision for au-
tomotive applications.
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